Antihmotu je možné vyrobit i uměle s pomocí urychlovačů částic. V Evropské organizaci pro jaderný výzkum CERNu v Ženevě a ve Fermiho laboratoři v Chicagu se podařilo z antičástic vytvořit atomy antivodíku. V jejich jádrech jsou záporné antiprotony, které jsou obíhány kladně nabitými pozitrony.Po několika kontaktech s různými elektrony (e-) ztratí tolik energie, že nakonec reaguje s jedním elektronem. Výsledkem procesu anihilace je emitování dvou fotonů, přičemž každý má typicky energii 511 keV.Antihmota se vyskytuje velmi řídce, a to v kosmickém záření (antiprotony a pozitrony tvoří 0,01 %). Dále mohou vznikat při vysokoenergetických procesech, příkladem jsou výbuchy supernov. Také se získávají pomocí urychlovačů částic (CERN, FermiLab), nebo při pozitronovém rozpadu radioaktivních prvků.
Kde se nachází antihmota : Kde se vzala antihmota Existenci antihmoty předpověděl v roce 1928 britský fyzik Paul Dirac. Brzy poté (v roce 1932) Američan Carl David Anderson antihmotu skutečně objevil ve srážkách vysokoenergetických částic kosmického záření. Pokud víme, žádná volná antihmota dnes ve vesmíru neexistuje.
Co je to antičástice
Antičástice je ve svém smyslu slova "opakem" částice. V přírodě existuje symetrie mezi částicemi a antičásticemi, kterou můžeme vidět v následujících případech: antičástice má stejný spin, stejnou hmotnost i stejnou střední dobu svého života.
Jak vzniká volný elektron : Elektrony mohou být vázané nebo volné. Elektrony mohou svou dráhu opustit vlivem vnějšího elektrického pole nebo teploty. Tyto elektrony se nazývají volné a pohybují se zcela náhodně. Po připojení elektrického napětí vzniká elektrické pole, které udává směr pohybu volných elektronů a tím vytváří elektrický proud.
Anihilace (annihilation) je jev, při kterém se spojí částice a antičástice. Spojením obě původní částice zanikají a vznikají částice jiného typu. V medicíně je běžně tento jev pozorován při interakci pozitronu a elektronu, přičemž se vyzáří dva fotony o energii 0,51 MeV letící opačným směrem.
POLOVODIČE. Polovodiče typu N jsou polovodiče s elektronovou vodivostí (s negativní vodivostí N). Vznikne vpravením vícevalenčního atomu do krystalové mříže polovodiče. Například nahradíme-li některý atom čtyřmocného křemíku pětimocným atomem fosforu (substituční atom).
Jak vzniká Hradlova vrstva
Na rozhraní mezi vodivostí typu P a N dochází k rekombinaci mezi dírami a elektrony. Vzniká tam tenoučká oblast bez volných nositelů náboje, říká se jí hradlová vrstva.Výroba. PN přechod je vytvořen difuzí materiálu typu P do materiálu typu N. Materiál typu P potom pronikne rovnoměrně do materiálu typu N. PN přechod může být připojen v závěrném, nebo propustném směru, proto propouští proud jedním směrem, jako výše zmíněné hradlo.Polovodičové součástky najdeme v různých elektronických zařízeních, jako jsou počítače, tablety, mobilní telefony, ale také v přesných měřicích přístrojích.
PN přechod je vytvořen difuzí materiálu typu P do materiálu typu N. Materiál typu P potom pronikne rovnoměrně do materiálu typu N. PN přechod může být připojen v závěrném, nebo propustném směru, proto propouští proud jedním směrem, jako výše zmíněné hradlo.
Jak se vyrábí dioda : Hrotová dioda se vyrábí tak, že k polovodičové destičce (většinou typu N) se přitlačí hrotem wolframový drátek, kterým se nechá krátkodobě projít elektrický proud. Tím dojde k přivaření drátku a vzniká stabilní přechod PN. Plocha přechodu je malá, proto může diodou procházet malý proud.
Jak funguje přechod PN : PN přechod je oblast na rozhraní polovodiče typu N a P.
Výsledkem je, že propouští elektrický proud pouze jedním směrem, jde o tzv. diodový jev. Vlastnosti PN přechodu jsou dále ovlivněny zvnějšku, např. dopadajícím zářením (světlem), nebo teplem.
Jak vzniká hradlová vrstva
Na rozhraní mezi vodivostí typu P a N dochází k rekombinaci mezi dírami a elektrony. Vzniká tam tenoučká oblast bez volných nositelů náboje, říká se jí hradlová vrstva.
Základní surovinou pro polovodičovou výrobu je křemík. Destičky z monokrystalického křemíku tvoří základ výroby všech polovodičových součástek; jsou určeny pro vlastní potřebu, ale zároveň jsou i žádaným obchodním artiklem.Přechod PN v propustném směru: – připojíme-li k polovodiči P kladný pól a k polovodiči N záporný pól zdroje, přecházejí působením elektrických sil volné elektrony přes přechod PN ke kladnému pólu a "díry" jsou přitahovány k zápornému pólu. Hradlová vrstva prakticky zanikne a její odpor se výrazně zmenší.
Kolik má dioda PN přechodu : Princip: Polovodičová dioda je součástka s jedním PN přechodem, tedy s částí typu P a s částí typu N. Protože v blízkosti přechodu je velký gradient (spád, změna) koncentrace děr i elektronů, pronikají elektrony do části P a díry do části N a vzájemně rekombinují.