Jak poznam sinus?
Goniometrické funkce můžeme v pravoúhlém trojúhelníku vyjádřit následovně: Sinus ( ⁡ sin) úhlu α je poměr délky odvěsny protilehlé úhlu α a délky přepony.A naopak, pokud u cosinu odečteme π/2, dostaneme sinus.sin(90) = sin(2.035rad) = 0.8939.

Jak zapsat sinus : Sinus je goniometrická funkce nějakého úhlu. Zapisuje se jako sin θ, kde θ je velikost úhlu. Pro ostré úhly je definována v pravoúhlém trojúhelníku jako poměr protilehlé odvěsny a přepony (nejdelší strany).

Jak poznat sinus a cosinus

Obě funkce jsou definovány na . Také to můžeme poznat z grafů obou funkcí, graf funkce sinus je souměrný podle počátku a graf funkce kosinus je souměrný podle osy . Obě jsou periodické, jejich nejmenší perioda je . Například je to vidět z grafů funkcí nebo z jednotkové kružnice.

Kolik je sinus 25 :

X [º] X [rad] sin(x)
23 0,4014 0,3907
24 0,4189 0,4067
25 0,4363 0,4226
26 0,4538 0,4384

Před stiskem samotné klávesy sin, cos nebo tan, je třeba stisknout klávesu, která bývá označena symbolem INV, Shift, 2nd, nebo f–1. Inverzní funkce k sin bývá označována sin–1 nebo arcsin. Inverzní funkce ke cos se značí cos–1 nebo arccos. Inverzní funkce k tan se označuje tan–1 nebo arctan.

Druhou souřadnici bodu jednotkové kružnice na koncovém rameni orientovaného úhlu v základní poloze nazýváme sinus a jeho první souřadnici nazveme kosinus . Používáme značení , . Je tedy , , pro každé .

Kdy je sinus Roveň 0

Je-li úhel roven 0, protneme jednotkovou kružnici zde. Hodnota 'y' je stále 0, je to bod [1,0]. 'y' je 0, takže i sinus θ je 0.Sinus je kladný ještě v kvadrantu druhém, tangens ve třetím a kosinus ve čtvrtém.Druhou souřadnici bodu jednotkové kružnice na koncovém rameni orientovaného úhlu v základní poloze nazýváme sinus a jeho první souřadnici nazveme kosinus .

Cosinus

  1. Definiční obor je množina všech reálných čísel.
  2. Obor hodnot je interval <−1,1>.
  3. Cosinus má maximum v nekonečně mnoha bodech.
  4. Podobně pro minimum: cosinus má minimum v bodech π + 2kπ, kde k je celé číslo a jeho hodnota je −1.
  5. cosinus je sudá a omezená funkce.

Kdy je sinus 1 : Přesněji „první“ maximum má v bodě x = π 2 a protože je to periodická funkce, tak má maximum také v každém bodě π 2 + 2 k π , kde k je celé číslo. Hodnota maxima je pak 1. Podobně pro minimum: sinus má minimum v bodech − π 2 + 2 k π , kde k je celé číslo a jeho hodnota je −1. Sinus je lichá a omezená funkce.

Co je sinus a cosinus : V pravoúhlém trojuhelníku může sinus úhlu dosahovat hodnot mezi 0 až 1. Kosinus (cos): Kosinus úhlu v pravoúhlém trojúhelníku je definován jako poměr délky přilehlé strany k délce přepony trojúhelníka. V pravoúhlém trojuhelníku může kosinus úhlu dosahovat hodnot mezi 0 až 1.

Kdy je sinus kladný

V prvním kvadrantu mají funkce sinus, kosinus i tangens (kotangens) kladnou hodnotu. Sinus je kladný ještě v kvadrantu druhém, tangens ve třetím a kosinus ve čtvrtém.

Funkce sinus je definována v pravoúhlém trojúhelníku jako poměr protilehlé odvěsny a přepony. Jejím grafem je sinusoida. Funkce je definována od −∞ do +∞ a nabývá hodnot od −1 do 1.Nejprve definujeme sin(0) = 0, cos(0) = 1, sin(π/2) = 1, cos(π/2) = 0. Pro α z ⟨π/2,π⟩ definujeme sin(α) = sin(π − α) a cos(α) = −cos(π − α).

Kdy je cosinus : Kosinus (cos): Kosinus úhlu v pravoúhlém trojúhelníku je definován jako poměr délky přilehlé strany k délce přepony trojúhelníka. V pravoúhlém trojuhelníku může kosinus úhlu dosahovat hodnot mezi 0 až 1.